Extensions 1→N→G→Q→1 with N=C22 and Q=S3xC10

Direct product G=NxQ with N=C22 and Q=S3xC10
dρLabelID
S3xC22xC10120S3xC2^2xC10240,206

Semidirect products G=N:Q with N=C22 and Q=S3xC10
extensionφ:Q→Aut NdρLabelID
C22:(S3xC10) = C10xS4φ: S3xC10/C10S3 ⊆ Aut C22303C2^2:(S3xC10)240,196
C22:2(S3xC10) = C5xS3xD4φ: S3xC10/C5xS3C2 ⊆ Aut C22604C2^2:2(S3xC10)240,169
C22:3(S3xC10) = C10xC3:D4φ: S3xC10/C30C2 ⊆ Aut C22120C2^2:3(S3xC10)240,174

Non-split extensions G=N.Q with N=C22 and Q=S3xC10
extensionφ:Q→Aut NdρLabelID
C22.1(S3xC10) = C5xD4:2S3φ: S3xC10/C5xS3C2 ⊆ Aut C221204C2^2.1(S3xC10)240,170
C22.2(S3xC10) = C5xC4oD12φ: S3xC10/C30C2 ⊆ Aut C221202C2^2.2(S3xC10)240,168
C22.3(S3xC10) = Dic3xC20central extension (φ=1)240C2^2.3(S3xC10)240,56
C22.4(S3xC10) = C5xDic3:C4central extension (φ=1)240C2^2.4(S3xC10)240,57
C22.5(S3xC10) = C5xC4:Dic3central extension (φ=1)240C2^2.5(S3xC10)240,58
C22.6(S3xC10) = C5xD6:C4central extension (φ=1)120C2^2.6(S3xC10)240,59
C22.7(S3xC10) = C5xC6.D4central extension (φ=1)120C2^2.7(S3xC10)240,64
C22.8(S3xC10) = C10xDic6central extension (φ=1)240C2^2.8(S3xC10)240,165
C22.9(S3xC10) = S3xC2xC20central extension (φ=1)120C2^2.9(S3xC10)240,166
C22.10(S3xC10) = C10xD12central extension (φ=1)120C2^2.10(S3xC10)240,167
C22.11(S3xC10) = Dic3xC2xC10central extension (φ=1)240C2^2.11(S3xC10)240,173

׿
x
:
Z
F
o
wr
Q
<