extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(S3xC10) = C5xD4:2S3 | φ: S3xC10/C5xS3 → C2 ⊆ Aut C22 | 120 | 4 | C2^2.1(S3xC10) | 240,170 |
C22.2(S3xC10) = C5xC4oD12 | φ: S3xC10/C30 → C2 ⊆ Aut C22 | 120 | 2 | C2^2.2(S3xC10) | 240,168 |
C22.3(S3xC10) = Dic3xC20 | central extension (φ=1) | 240 | | C2^2.3(S3xC10) | 240,56 |
C22.4(S3xC10) = C5xDic3:C4 | central extension (φ=1) | 240 | | C2^2.4(S3xC10) | 240,57 |
C22.5(S3xC10) = C5xC4:Dic3 | central extension (φ=1) | 240 | | C2^2.5(S3xC10) | 240,58 |
C22.6(S3xC10) = C5xD6:C4 | central extension (φ=1) | 120 | | C2^2.6(S3xC10) | 240,59 |
C22.7(S3xC10) = C5xC6.D4 | central extension (φ=1) | 120 | | C2^2.7(S3xC10) | 240,64 |
C22.8(S3xC10) = C10xDic6 | central extension (φ=1) | 240 | | C2^2.8(S3xC10) | 240,165 |
C22.9(S3xC10) = S3xC2xC20 | central extension (φ=1) | 120 | | C2^2.9(S3xC10) | 240,166 |
C22.10(S3xC10) = C10xD12 | central extension (φ=1) | 120 | | C2^2.10(S3xC10) | 240,167 |
C22.11(S3xC10) = Dic3xC2xC10 | central extension (φ=1) | 240 | | C2^2.11(S3xC10) | 240,173 |